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ABSTRACT

Our theoretical study of the third-order susceptibility (ø(3)) for Ag dielectric composite reveals a critical role of saturation of optical transitions
between discrete states of conduction electrons in metal quantum dots. The calculated size dependence of the ø(3) for Ag nanoparticles
reproduces the published experimental results. Saturation effects lead to a decrease of the local field enhancement factor that is of particular
importance for surface-enhanced phenomena, such as Raman scattering and nonlinear optical responses.

Plasmonic nanomaterials have attracted much recent research
interest because of their unique optical properties, such as
nonlinear optical activity,1 the chirality of plasmon modes,2

and the quantum-size effect in two-photon excited lumines-
cence.3 Current state-of-the-art nanofabrication techniques
allow the development of novel applications based on such
properties. Of particular importance for applications are the
large local-field enhancements for metal particle aggregates
that lead to surface-enhanced Raman scattering (SERS) and
a number of nonlinear optical phenomena,4 including the
polarization nonlinearities.5

The optical response of a nanosized metal particle is a
core of all aforementioned phenomena. The confinement of
electrons in a metal quantum dot leads to energy quantization
of conduction band and appearance of collective plasmon
modes. It is well-known that the energy quantization affects
most of the physical properties of metal nanoparticles,6-8

and in particular its nonlinear optical response.9,10

The optical properties of a nanosized metal particle can
be described in terms of electron transitions between the
discrete energy states in a quantum well subjected to the
enhanced local field. Large enhancements of the local field
inside a particle can be realized at the plasmon resonance
frequency. The local field inside a spherical particle,Ei, is
related to the applied field,E0, by the local field (enhance-
ment) factorf(ω) as follows:11

whereεm ) ε′m + iε′′m is the complex dielectric response of

the metal, andεh is the dielectric function of a host medium.
Note that the zero in the denominator in eq 1 is the surface
plasmon resonance condition for a spherical particle embed-
ded in a host.

In a composite with a small volume fraction of metal
particles, the third-order nonlinear susceptibility can be
computed by9

wherep is a volume fraction of the metal particles andøm
(3)

is the nonlinear susceptibility term of the metal particle itself.
It should be noted that both intraband (within conduction
band) and interband (between d- and s-p conduction bands)
transitions contribute toøm

(3). Utilizing the degenerate four-
wave mixing technique, theø(3) values and its size depen-
dence were extracted from recent detailed experimental
studies for nanosized Ag, Au, and Cu particles.9,12,13Some
of these results were taken to compare the findings with
existing theoretical models in order to resolve the origin of
the optical nonlinearity. Doing so, it was concluded that the
conduction electron intraband transitions play a relatively
minor role. This conclusion was based on a theoretical size
dependence derived by Hache, Ricard, and Flytzanis (HRF),9

with the Hamiltonian that uses a description in terms of a
vector potential and electron momentum.

In this letter, we will demonstrate that the opposite
conclusion can be made if one adopts the quantum well
theory with the Hamiltonian of electron-field interaction
taking the form

whered is the dipole moment andE is the electrical field.
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Recently, Rautian10 showed that, for nanosized spherical
particles, the use of the Hamitonian given in eq 3 is preferred,
and that this Hamiltonian is no longer equivalent to the
standard Hamiltonian in terms of a vector potential. Here,
we compare the approaches based on the Rautian and HRF
models and calculate the size dependencies of bothøm

(3) and
f(ω) for nanosized Ag particles. Our results reaffirm the
Rautian model, and we find good agreement of the size-
dependentøm

(3) with the experiment, a result that is not
achieved with HRF’s approach.

The characteristic separation between the levels near the
Fermi energy,EF, can be estimated asδF ) 2xEFE0, where
E0 ) p2/2ma2 is the energy separation found at the bottom
of the conduction band of particles with radiusa. Under the
conditionpω . δF, which is the case for the particle radii
ranging from about 2 to about 100 nm and visible frequencies
ω, one can distinguish two kinds of transitions between
discrete states, resonant (ωij∼ω) and nonresonant (ωij,ω).
The potential saturation of optical transitions between the
discrete levels in metal nanoparticle is a second crucial factor.
Saturation effects result in a decrease of the local field
enhancement factor, and a subsequent decrease in the
enhancements for SERS as well as for nonlinear effects.

Using the degenerate electron gas model in an infinite
spherical well in the limit (υF/2πc) λ , a , λ (whereυF is
the electron speed near the Fermi surface), Rautian was able
to derive the linear and nonlinear dipole moments for a
spherical particle induced by field componentEi:

In eq 4,a denotes the particle radius,ω is the frequency of
the field,m is the electron mass,e is the electron charge,N
is the number of electrons in the particle,I0 ) ∑|Ei|2, Γ1

andΓ2 represent the relaxation rates for the population and
coherence, respectively. We focus on a linearly polarized
field, whereAi ) 2/5. For our case, the parametersF1, g1,
F3, andg3 are only weakly size dependent (if at all):F1 is
approximately unity,g1 ) 0.6 at pω/EF ≈ 0.5, F3 ranges
from 0.30 to 0.33 for particles varying between 2 and 15
nm, andg3 ) 0.64. A detailed discussion of how to calculate
these parameters can be found in ref 10. Basically, the
parametersg1 and g3 result from the integration over the
resonant states, whereasF1 andF3 result from the summation
of the nonresonant terms close toEF.10

A componentxxxxof the nonlinear tensor susceptibility,
øm,xxxx

(3) can then be written as the sum of the nonresonant,
ømn

(3), and resonant,ømr
(3), contributions, i.e.

Nonresonant contributions can be calculated by integrating
over transitions close to the Fermi energy, and resonant
contributions are derived by integration from zero to infinity

when the energy difference is close to the photon energy.
An analysis of eq 4 shows that for linear polarization the
two terms in eq 5 are given by

and

wheren is the electron density. Althoughømn
(3) andømr

(3) have
different dependencies on the particle size, i.e.,ømn

(3) ∝ a2

and ømr
(3) ∝ a-3 (note the dependence ona for δF), their

contributions can be quite similar when dealing with nano-
sized particles. Underestimating the contribution due to
nonresonant transitions can cause an incorrect value and size-
dependence forøm

(3). To find the magnitudes ofømn
(3) andømr

(3),
we need to know the parametersΓ1 and Γ2. The electron
relaxation in a metal nanoparticle can be expected to be
energy- and size-dependent,14 and it is reasonable to consider
the effective relaxation constants as two fitting parameters.
Nevertheless, it is useful to obtain some idea about possible
ranges ofΓ1 and Γ2 beforehand.Γ1 can be extracted from
the kinetic rate of the linear optical response or multiphoton
electron photoemission under femtosecond excitation. These
studies provide a range of values forΓ1 between 2.5 and 10
cm-1 for Ag.15-17 Γ2 is sometimes being associated with the
mean free path in a metal, which can be deduced from
electrical conductivity studies. For bulk Ag, it is found that
Γ2 is of the order of 70 cm-1.8 It is therefore reasonable to
assume thatΓ2 is of the same order of magnitude for
nanosized Ag particles.

Figure 1 shows a typical size-dependence for various
relaxation constantsΓ2 and for a fixed ratio ofΓ2/Γ1 ) 10.
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Figure 1. Dependence oføm,xxxx
(3) on Ag particle size at a fixed

ratio of Γ2/Γ1 ) 10 for various values ofΓ2 ranging from 30 to
70 cm-1.
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It is obvious from the figure that nonresonant and resonant
contributions compete with each other, and this results in
the formation of a minimum inøm,xxxx

(3) .
Next, we explored the dependence oføm,xxxx

(3) for fixed
values ofΓ2 at various ratios ofΓ2/Γ1. An exemplary result
is shown in Figure 2, which demonstrates that the position
of the minimum is rather insensitive to the ratioΓ2/Γ1 and
that it is mostly determined by the valueΓ2 in the region of
interest.

The calculated size dependence oføm,xxxx
(3) differs substan-

tially from the behavior predicted by the HRF approach. As
will be shown below, their model predicts a continuous
decrease oføm,xxxx

(3) with increasing particle size, with be-
havior similar to our approach only for very small particle
sizes (less than 3 nm or so).

After deriving the expression forøm,xxxx
(3) , the next task

remaining is to compute the local field enhancement factor
f(ω), which would allow us then to obtain a value for the
third-order nonlinear susceptibility as given in eq 2.

As can be seen from eq 1, the local field enhancement
factor can be written as

where

with

Here, εd is the interband contribution. The zero in the

superscripts indicates the linear approximation. Since the
medium modifies its properties due to the Kerr effect, higher-
order corrections to metal dielectric constants are needed.

As can be seen from eqs 7 and 8,εm andf(ω) are coupled,
and the local field enhancement factor becomes strongly
intensity dependent at high intensities. In general, eq 7 will
be cubic on the enhancement factor, and can be solved
numerically. After some algebra, eq 7 reads as

with the coefficients

The parameters in eq 10 are given as

with øm
(3) given by eqs 5 and 6. For givenΓ1 and Γ2, the

solutions at different incident intensities can be computed
numerically for different particle sizes and some exemplary
results are given in Figures 3 and 4. According to ref 19,εd

) 5, and according to ref 13,εh ) 2.2.
For all particle sizes, there is a decrease in the maximal

enhancement factor, even at relatively small intensities.
However, the behavior for large particles can be quite
different from the one for small particles. For small particles
(Figure 3), the position of the maximum inf(ω) is unchanged,
and there is only a decrease of enhancement factor with
increasing intensity. For relatively large particles (Figure 4),
on the other hand, the resonance condition can be substan-
tially altered as a function of the intensity. This leads to an
irregular “distorted” shape forf(ω), and as a result, nonunique

Figure 2. Dependence oføm,xxxx
(3) on Ag particle size at a fixed

value ofΓ2 ) 70 cm-1 and various values ofΓ1 ranging from 2 to
10 cm-1.
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Figure 3. Wavelength dependence of the enhancement factorf(λ,I0)
for 3-nm Ag particles at various intensitiesI0 ranging from 0.1 to
120 MW/cm2.

A|f(ω)|6 + B|f(ω)|4 + C|f(ω)|2 + D ) 0 (9)

A ) c2 + d2, B ) 2(ac + bd), C ) a2 + b2, D ) -9εh
2 (10)

a ) Re(εm
0 ) + 2εh, b ) Im(εm

0 ), c ) I0 12πRe(øm
(3)), d )

I0 12πIm(øm
(3)) (11)
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solutions for the enhancement factor at higher wavelength
are possible.

To better understand this behavior, we determine the
intensity dependence of the enhancement factor at the surface
plasmon wavelength for different particle sizes. The result
is shown in Figure 5, and we see that larger particles exhibit
saturation effects at far lower intensities when compared to
smaller particles. In fact, we find that the saturation manifests
itself for the enhancement factor at 100 kW/cm2 for isolated
particles with sizes larger than 7 nm. It is this saturation
tendency that is at the origin of the optical bistability (multi-
ple solutions) in materials, as has been discussed by Yoon
et al.18 It should be noted that the formula (8) is generally
valid only if nonlinear contributions are small compared with
linear ones. At very high intensity, nonlinear contributions
higher than third-order have to be taken into account.

Using the computed wavelength dependencies of the
enhancement factors as a function of intensity and particle
size, we can calculateøeff

(3)/R, where R is the absorption
coefficient andøeff

(3) is the experimentally measured nonlin-
ear effective susceptibility of a composite as given in eq 2.
The absorption coefficient is related to the volume fraction
p sinceR ) pω|f(ω)|2εm′′/nc, with n ) (εh)1/2. The calculated
values oføeff

(3)/R are then compared with the experimental
results by Uchida et al.13 The only fitting parameters used
in our calculation wereΓ1 andΓ2, and the intensityI0 was
fixed to the experimental value of 0.1 Mw/cm2.

Figure 6 shows the experimental data together with our
best fit that resulted in reasonable values forΓ2 ≈ 60 ( 3
cm-1 andΓ1 ≈ 5 ( 0.2 cm-1. For comparison, we have also
included the predictions arising from the HRF model. Unlike
our results, the HRF model predicts a continuous decrease
of øeff

(3)/R as a function of Ag particle size, which is not
corroborated by the experimental data by Uchida et al. Their
experimental results were reported without an estimate of
potential error bars, and considering the complexity of such
experiments relatively large errors (up to 30-50%) could
be expected. Even so, we find that the HRF model does not
reproduce the experimental results in qualitative size depen-
dence and shows 2 orders of magnitude discrepancy in
absolute value for large particles, while our approach is in
good agreement with the overall behavior.

Our approach provides additional evidence that the field-
induced processes in the conduction band are responsible
for the nonlinear behavior of the optical response in Ag
nanoparticles. The underlying mechanism is a decrease in
the population difference for the coupled energy levels, which
ultimately causes the saturation effect for optical transitions
in a system with discrete levels. In general, discrete energy
levels can be considered if their spectral width, 2Γ2, is less
than the transition energy. For nanosized Ag particles, our
best fit yields values forΓ2 that are more than one order of

Figure 4. Wavelength dependence of the enhancement factorf(λ,I0)
for 11-nm Ag particles at various intensitiesI0 ranging from 0.1 to
5.1 MW/cm2.

Figure 5. Intensity dependence of the enhancement factorf(λ, I0)
for different particle radii ranging from 2 to 15 nm atλ ) 420 nm.
Note that a logarithmicx-axis is used for clarity.

Figure 6. Comparison of the dependence oføeff
(3)/R on Ag particle

size using two different theoretical approaches, the one discussed
in this paper (solid line), and the one based on the HRF model9

(dashed line), with the experimentally determined values (solid
circles) from Uchida et al.13 Note that a logarithmicy-axis has been
used for clarity.
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magnitude smaller than typical transition energies in the
vicinity to EF.

The decrease in the local-field enhancement factor is a
direct consequence of the saturation effects in metal quan-
tum dots. The local field effect introduced phenomen-
ologically through eq 1 implies a linear increase with the
field in the particle’s dipole moment associated with single
electron excitations. The dipole moments cannot grow
infinitely with the field; they are limited by the saturation
of optical transitions, which causes the decrease of the local
field enhancement factor. Formally, this follows from
eqs 7 and 8, where the enhancement factor is given as a
function of the intensity-dependent susceptibility of metal
particles.

In summary, the above model is in good agreement with
the observed size dependence of the cubic nonlinearity in
the susceptibility for Ag particles. Specifically, we were
able to reproduce the experimentally observed size depen-
dence onøeff

(3)/R using the theoretical treatment proposed by
Rautian. This behavior cannot be explained by the HRF
approach, which was previously used for the description of
experimental results in metal-particle composite systems.
Furthermore, our studies emphasize the importance of
saturation effects for the local field enhancement factor,
which strongly affects nonlinear processes and SERS. The
results presented here suggest the saturation of optical
transitions in metal nanostructure as the probable reason for
a decrease in SERS enhancement. Therefore, the saturation
will be especially important when using high-intensity laser
light typical for pulsed fs and ps lasers. Finally, we note
that the present consideration, emphasizing the role of
quantum effects in metal nanoparticles, indicates that revi-
sions for interpretations of several previous experimental
observations on optical properties of metal nanoparticles
might be needed.
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